Regular Sequences of Symmetric Polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regular Sequences of Symmetric Polynomials

A set of n homogeneous polynomials in n variables is a regular sequence if the associated polynomial system has only the obvious solution (0, 0, . . . , 0). Denote by pk(n) the power sum symmetric polynomial in n variables x k 1 +x 2 + · · ·+xk n . The interpretation of the q-analogue of the binomial coefficient as Hilbert function leads us to discover that n consecutive power sums in n variabl...

متن کامل

Regular Sequences of Power Sums and Complete Symmetric Polynomials

In this article, we carry out the investigation for regular sequences of symmetric polynomials in the polynomial ring in three and four variable. Any two power sum element in C[x1,x2, . . . ,xn] for n ≥ 3 always form a regular sequence and we state the conjecture when pa, pb, pc for given positive integers a < b < c forms a regular sequence in C[x1,x2,x3,x4]. We also provide evidence for this c...

متن کامل

Sequences of Symmetric Polynomials and Combinatorial Properties of Tableaux

In 1977 G.P. Thomas has shown that the sequence of Schur polynomials associated to a partition can be comfortabely generated from the sequence of variables x = (x1; x2; x3; : : :) by the application of a mixed shift/multiplication operator, which in turn can be easily computed from the set SY T () of standard Young tableaux of shape. We generalise this construction, thereby making possible | fo...

متن کامل

Note on regular and coregular sequences

Let R be a commutative Noetherian ring and let M be a nitely generated R-module. If I is an ideal of R generated by M-regular sequence, then we study the vanishing of the rst Tor functors. Moreover, for Artinian modules and coregular sequences we examine the vanishing of the rst Ext functors.

متن کامل

Symmetric Polynomials

f(T1, . . . , Tn) = f(Tσ(1), . . . , Tσ(n)) for all σ ∈ Sn. Example 1. The sum T1 + · · ·+ Tn and product T1 · · ·Tn are symmetric, as are the power sums T r 1 + · · ·+ T r n for any r ≥ 1. As a measure of how symmetric a polynomial is, we introduce an action of Sn on F [T1, . . . , Tn]: (σf)(T1, . . . , Tn) = f(Tσ−1(1), . . . , Tσ−1(n)). We need σ−1 rather than σ on the right side so this is a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rendiconti del Seminario Matematico della Università di Padova

سال: 2009

ISSN: 0041-8994

DOI: 10.4171/rsmup/121-11